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Data are interesting, but do not answer
any of the thousands of possible questions:

* How does my genome compare to yours!
* How does expression or methylation or chromatin change!?
*  What diseases are you at risk for, what pathogens have you
been exposed to, and what medicines should we give you?




Data are interesting, but do not answer
any of the thousands of possible questions:

* How does my genome compare to yours!
* How does expression or methylation or chromatin change!?
*  What diseases are you at risk for, what pathogens have you
been exposed to, and what medicines should we give you?

Who will answer those questions?
How will they do it?
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Biological Data

1 lllumina X-Ten sequences a genome every 30 minutes
~100k whole human genomes sequenced
Worldwide capacity exceeds 25 Pbp/year



How much is a petabyte?

Unit__ _ Size
Byte I

Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000

*Technically a kilobyte is 210 and a petabyte is 2°°



How much is a petabyte?
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DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

1400 ~1 exabyte
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DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!
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How much is a zettabyte!

Unit | Size
Byte I
Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000
Exabyte 1,000,000,000,000,000,000

Zettabyte 1,000,000,000,000,000,000,000



How much is a zettabyte?

(11 Tube

100 GB / Genome
4.7GB / DVD
~20 DVDs / Genome

X

10,000,000,000 Genomes

1ZB Data 150,000 miles of DVDs Both currently ~100Pb
200,000,000,000 DVDs ~ %2 distance to moon And growing exponentially



Sequencing Centers 2014
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Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com




Informatics Centers 2014
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The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013



Biological Data

Much of the capacity is used to
sequence genomes (or exomes)
of individuals...

cell

DNA

nudleus | \

... but biology is much more
than just genomes...
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Averrates soncey ... but biology is much more
[ B — than just sequences...

Soon et al., Molecular Systems Biology, 2013
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Phil Bourne, Associate Director of Data Science for NIH
http://www.slideshare.net/pebourne/wiki-mania080914
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How!

Integration of multiple data types
Massively scalable

Geographically distributed
Computationally flexible

Tolerate noise, errors, and artifacts
Support data exploration and ambiguity

Reliable, reproducible, and secure




Results
Domain
Knowledge

Machine Learning
classification, modeling,
visualization & data Integration

Algorithmics
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

|O Systems

Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies




BIOLOGICAL DATA SCIENCE

 AVALABLE

VASIANTS e

CANCER

LARGE - ¥

T p—
g
g

Wednesday

Thursday
Thursday
Thursday
Thursday
Thursday
Friday
Friday
Friday
Friday
Friday

Saturday

Introduction
Keynote Speaker

1 Data and Data Mining |

2 Data and Data Mining |I
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Master Lecture

“Homomorphic encryption as a tool
to preserve privacy in genomic
computation”

Friday @ 4:30pm

Kristin Lauter, Ph.D.
Microsoft Research



Schedule Change

‘a

Eric Perakslis, Ph.D.
Harvard Medical School

Saturday Morning: Human Biology

Mark Gerstein will present first in the
session

Plan to break for lunch at 11:40am
instead of noon



Keynote Introduction

Ph.D. in CS from the Univ. of Colorado at
Boulder in 1982

Member of the NAS and the American
Academy of Arts and Sciences; Fellow of
AAAS and AAAI

Research combines mathematics, computer

science, and molecular biology

» Pioneered the use of HMMs and other
machine learning techniques for analyzing
biological sequences

» Major efforts in the human genome project,
and developing the UCSC Genome Browser

» Recently focused on understanding and
fighting cancer; sharing of data through the
Global Alliance for Genomics and Health

David Haussler, Ph.D.
Distinguished Professor of Biomolecular Engineering at UCSC

Investigator, Howard Hughes Medical Institute
Scientific Director, UC Santa Cruz Genomics Institute






